Part Number Hot Search : 
102M1 MBM29 CE66P6 86GN12 BZX79C22 TDA81 APTGF BA3412
Product Description
Full Text Search
 

To Download IR2235JPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v offset 600v or 1200v max. i o +/- 200 ma / 420 ma v out 10 - 20v or 12 - 20v t on/off (typ.) 750/700 ns deadtime (typ.) 250 ns product summary 3-phase bridge driver ir2133/ir2135(j & s ) & (pbf) ir2233 / ir2235 ( j & s ) & (pbf) data sheet no. pd60107 revx www.irf.com 1 features ? ? ? ? ? floating channel designed for bootstrap operation fully operational to +600v or+1200v tolerant to negative transient voltage dv/dt immune ? ? ? ? ? gate drive supply range from 10v/12v to 20v dc and up to 25v for transient ? ? ? ? ? undervoltage lockout for all channels ? ? ? ? ? over-current shut down turns off all six drivers ? ? ? ? ? independent 3 half-bridge drivers ? ? ? ? ? matched propagation delay for all channels ? ? ? ? ? 2.5v logic compatible ? ? ? ? ? outputs out of phase with inputs ? ? ? ? ? all parts are also available lead-free description the ir2133ir2135/ir2233ir2355 (j&s) are high voltage, high speed power mosfet and igbt driver with three independent high side and low side referenced output channels for 3-phase applications. propri- etary hvic technology enables ruggedized monolithic construction. logic inputs are compatible with cmos or lsttl outputs, down to 2.5v logic. an independent operational amplifier provides an analog feedback of bridge current via an external current sense resistor. a current trip function which terminates all six outputs can also be de- rived from this resistor. a shutdown function is available to terminate all six outputs. an open drain fault signal is provide d to indicate that an over-current or undervoltage shutdown has occurred. fault conditions are cleared with the flt-clr lead. the output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. propagation delays are matched to simplify use in high frequency applications. the floating channels can be used to drive n-channel power mosfets or igbts in the high side configuration which operates up to 600 volts or 1200 volts. up to 600v or 1200v typical connection (refer to lead assignments for correct pin configuration). this/these diagram(s) show electrical connections only. please refer to our application notes and designtips for proper circuit board layout. packages 28-lead soic 44-lead plcc w/o 12 leads 28-lead pdip
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 2 www.irf.com absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all volt- age parameters are absolute voltages referenced to com. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. recommended operating conditions the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recommended conditions. all voltage parameters are absolute voltages referenced to com. the v s offset rating is tested with all supplies biased at 15v differential. note 1: logic operational for v s of com - 5v to com + 600v/1200v. logic state held for v s of com -5v to com -v bs . (please refer to the design tip dt97-3 for more details). note 2: all input pins, op amp input and output pins are internally clamped with a 5.2v zener diode. symbol definition min. max. units v b1,2,3 high side floating supply voltage (ir2133/ir2135) -0.3 625 (ir2233/ir2235) -0.3 1225 v s1,2,3 high side floating supply offset voltage v b1,2,3 - 25 v b1,2,3 + 0.3 v ho1,2,3 high side floating output voltage v s1,2,3 - 0.3 v b1,2,3 + 0.3 v cc fixed supply voltage -0.3 25 v ss logic ground v cc - 25 v cc + 0.3 v lo1,2,3 low side output voltage -0.3 v cc + 0.3 v in logic input voltage (hin, lin, itrip, sd & flt-clr) v ss - 0.3 (v ss + 15) or (v cc + 0.3) whichever is lower v in,amp op amp input voltage (ca+ & ca-) v ss - 0.3 v cc + 0.3 v out,amp op amp output voltage (cao) v ss - 0.3 v cc + 0.3 v flt fault output voltage v ss - 0.3 v cc + 0.3 dv s /dt allowable offset supply voltage transient 50 p d package power dissipation @ t a 25oc (28 lead pdip) 1.5 (28 lead soic) 1.6 (44 lead plcc) 2.0 rth ja thermal resistance, junction to ambient (28 lead pdip) 83 (28 lead soic) 78 (44 lead plcc) 63 t j junction temperature 125 t s storage temperature -55 150 t l lead temperature (soldering, 10 seconds 300 oc w v b1,2,3 high side floating supply voltage v s1,2,3 + 10/12 v s1,2,3 + 20 v s1,2,3 high side floating supply offset voltage (ir2133/ir2135) note 1 600 (ir2233/ir2235) note 1 1200 v ho1,2,3 high side floating output voltage v s1,2,3 v b1,2,3 v cc fixed supply voltage 10 or 12 20 v ss low side driver return -5 5 v lo1,2,3 low side output voltage 0 v cc v in logic input voltage (hin, lin, itrip, sd & flt-clr) v ss v ss + 5 v in,amp op amp input voltage (ca+ & ca-) v ss v ss + 5 v out,amp op amp output voltage (cao) v ss v ss + 5 v flt fault output voltage v ss v cc v symbol parameter definition min. max. units v/ns v oc/w
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 3 static electrical characteristics v bias (v cc , v bs1,2,3 ) = 15v unless otherwise specified and t a = 25 o c. all static parameters other than io and vo are referenced to v ss and are applicable to all six channels (h s1,2,3 & l s1,2,3 ). the vo and io parameters are referenced to com and v s1,2,3 and are applicable to the respective output leads: h o1,2,3 or l o1,2,3. v ih logic 0 input voltage (out = lo) 2.2 v il logic 1 input voltage (out = hi) 0.8 v fclr,ih logic 0 fault clear input voltage 2.2 v fclr,il logic 1 fault clear input voltage 0.8 v sd,th + sd input positive going threshold 1.6 1.9 2.2 v sd,th - sd input negative going threshold 1.4 1.7 2.0 v it,th + i itrip input positive going threshold 470 570 670 v it,th - i itrip input negative going threshold 360 460 560 v oh high level output voltage, v bias - v o 100 v in = 0v, i o = 0a v ol low level output voltage, v o 100 v in = 5v, i o = 0a i lk offset supply leakage current (ir2133/ir2135) 50 v b1,2,3 =v s1,2,3 = 600v (ir2233/ir2235) 50 v b1,2,3 =v s1,2,3 = 1200v i qbs quiescent v bs supply current 50 100 v in = 0v or 5v i qcc quiescent v cc supply current 4 8 ma v in = 0v or 5v i in + logic 1 input bias current (out = hi) 200 350 v in = 0v i in - logic 0 input bias current (out = lo) 100 250 v in = 5v i sd + high shutdown bias current 30 100 sd = 5v i sd - low shutdown bias current 100 na sd = 0v i itrip + high i itrip bias current 30 100 a i itrip = 5v i itrip - low i itrip bias current 100 na i itrip = 0v symbol v a dynamic electrical characteristics v bias ( v cc , v bs1,2,3 ) = 15v, v s1,2,3 = v ss , t a = 25 o c and c l = 1000 p f unless otherwise specified. definition min. typ. max. units test conditions t on turn-on propagation delay 500 750 1000 t off turn-off propagation delay 450 700 950 t r turn-on rise time 90 150 t f turn-off fall time 40 70 t sd sd to output shutdown propagation delay 500 750 1000 v in ,v sd = 0 & 5v t itrip itrip to output shutdown propagation delay 600 850 1100 v in ,v itrip = 0 & 5v t bl itrip blanking time 400 itrip = 1v t flt itrip to fault propagation delay 400 650 900 v in ,v itrip = 0 & 5v t fil,in input filter time (hin, lin and sd) 310 v in = 0 & 5v t fltclr flt-clr to fault clear time 600 850 1100 v in ,v itrip = 0 & 5v dt deadtime, ls turn-off to hs turn-on & 100 250 400 v in = 0 & 5v hs turn-off to ls turn-on sr+ amplifier slew rate (positive) 5 10 sr- amplifier slew rate (negative) 2 2.5 symbol v/s ns v in = 0 & 5v v s1,2,3 = 0 to 600v or 1200v definition min. typ. max. units test conditions note: for high side pwm, hin pulse width must be 1 sec mv a
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 4 www.irf.com static electrical characteristics continued v bias (v cc , v bs1,2,3 ) = 15v unless otherwise specified and t a = 25 o c. all static parameters other than io and vo are referenced to v ss and are applicable to all six channels (h s1,2,3 & l s1,2,3 ). the vo and io parameters are referenced to com and v s1,2,3 and are applicable to the respective output leads: h o1,2,3 or l o1,2,3. a symbol pw 10 s parameter definition min. typ. max. units test conditions i fltclr + high fault clear input bias current 200 350 flt-clr = 0v i fltclr - low fault clear input bias current 100 250 flt-clr = 5v v bsuv + v bs supply undervoltage positive going threshold (for ir2133/ir2233) 7.6 8.6 9.6 (for ir2135/ir2235) 9.2 10.4 11.6 v bsuv - v bs supply undervoltage negative going threshold (for ir2133/ir2233) 7.2 8.2 9.2 (for ir2135/ir2235) 8.3 9.4 10.5 v bsuvh v bs supply undervoltage lockout hysteresis (for ir2133/ir2233) 0.4 (for ir2135/ir2235) 1 v ccuv + v cc supply undervoltage positive going threshold (for ir2133/ir2233) 7.6 8.6 9.6 (for ir2135/ir2235) 9.2 10.4 11.6 v ccuv - v cc supply undervoltage negative going threshold (for ir2133/ir2233) 7.2 8.2 9.2 (for ir2135/ir2235) 8.3 9.4 10.5 v ccuvh v cc supply undervoltage lockout hysteresis (for ir2133/ir2233) 0.4 (for ir2135/ir2235) 1 r on,flt fault- low on resistance 70 100 ? i o + output high short circuit pulsed current 200 250 v out = 0v, v in = 0v i o - output low short circuit pulsed current 420 500 v out = 15v, v in = 5v v os amplifier input offset voltage 0 30 mv ca+=0.2v, ca-=cao i in,amp amplifier input bias current 4 na ca+ = ca- = 2.5v cmrr amplifier common mode rejection ratio 50 70 ca+ = 0.1v & 5v, ca- = cao psrr am plifier power supply rejection ratio 50 70 ca+=0.2v, ca-=cao v oh,amp amplifier high level output voltage 5 5.2 5.4 v ca+ = 1v, ca- = 0v v ol,amp amplifier low level output voltage 20 mv ca+ = 0v, ca- = 1v i src,amp amplifier output source current 4 7 ca+ = 1v, ca- = 0v, cao = 4v i snk,amp amplifier output sink current 0.5 1 ca+ = 0v, ca- = 1v, cao = 2v i o + ,amp amplifier output high short circuit current 10 ca+ = 5v, ca- = 0v, cao = 0v i o - ,amp amplifier output low short circuit current 4 ca+ = 0v, ca- = 5v, cao = 5v ma v cc = 10v & 20v db ma pw 10 s v
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 5 functional block diagram lead definitions symbol lead description hin1,2,3 logic inputs for high side gate driver outputs (ho1,2,3), out of phase. lin1,2,3 logic inputs for low side gate driver outputs (lo1,2,3), out of phase. fault indicates over-current or undervoltage lockout (low side) has occurred, negative logic. v cc logic and low side fixed supply. itrip input for over-current shut down. flt-clr logic input for fault clear, negative logic. sd logic input for shut down. cao output of current amplifier. ca- negative input of current amplifier. ca+ positive input of current amplifier. v ss logic ground. com low side return. v b1,2,3 high side floating supplies. ho1,2,3 high side gate drive outputs. v s1,2,3 high side floating supply returns. lo1,2,3 low side gate drive outputs
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 6 www.irf.com lead assignments itrip flt-clr cao ca- ca+ sd vss com lo3 lo2 lo1 vs3 ho3 vb3 fault lin3 lin2 lin1 hin3 hin2 hin1 vcc vb1 ho1 vs1 vb2 ho2 vs2 itrip flt-clr cao ca- ca+ sd vss com lo3 lo2 lo1 vs3 ho3 vb3 fault lin3 lin2 lin1 hin3 hin2 hin1 vcc vb1 ho1 vs1 vb2 ho2 vs2 28 lead dip 44 lead plcc w/o 12 leads 28 lead soic (wide body) ir2133 ir2135 ir2133j ir2135j ir2233j ir2235j ir2133s ir2135s ir2233s ir2235s part number figure 1. input/output timing diagram sd itrip hin 1,2,3 lin 1,2,3 ho 1 , 2 , 3 lo 1 , 2 , 3 flt-clr fault
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 7 flt-clr t flt any output 50% 50% itrip fault t fltclr t itrip 50% 50% 50% figure 4. overcurrent shutdown waveform hi n 50% 50% dt 50% 50% lin dt ho lo figure 3. deadtime waveform definitions hin lin t r t on t f t off ho lo 50% 50% 90% 90% 10% 10% figure 2. switching time waveform definitions u t in,fil t in,fil on on on off off off high low hin/lin ho/lo figure 4.5. input filter function figure 5. shutdown waveform definitions sd t sd ho lo 50% 90%
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 8 www.irf.com mi n. typ. m ax. 0 300 600 900 1200 1500 -50-25 0 255075100125 temperature ( o c) turn-on delay time (ns ) figure 6a. turn-on time vs. temperature mi n. typ. m ax. 0 300 600 900 1200 1500 10 12.5 15 17.5 20 supply voltage (v) turn-on delay time (ns ) figure 6b. turn-on time vs. voltage max. t yp. mi n. 0 300 600 900 1200 1500 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-off time (ns) figure 7a. turn-off time vs. temperature mi n. typ. m ax. 0 300 600 900 1200 1500 2.5 3 3.5 4 4.5 5 input voltage (v) turn-on delay time (ns ) figure 6c. turn-on time vs. input voltage mi n. typ. m ax. 0 300 600 900 1200 1500 10 12.5 15 17.5 20 supply voltage (v) turn-off time (ns) figure 7b. turn-off time vs. voltage typ. mi n. m ax. 0 300 600 900 1200 1500 2.5 3 3.5 4 4.5 5 input voltage (v) turn-off time (ns) figure 7c. turn-off time vs. input voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 9 m ax. typ. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-on rise time (ns fiure 8a. turn-on rise time vs.temperature typ. m ax. 0 50 100 150 200 250 10 12.5 15 17.5 20 supply voltage (v) turn-on rise time (ns fiure 8b. turn-on rise time vs.voltage typ. m ax. 0 30 60 90 120 150 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-off fall tim e figure 9a. turn-off fall time vs. temperature typ. m ax. 0 30 60 90 120 150 10 12.5 15 17.5 20 supply voltage (v) turn-off fall tim e figure 9b. turn-off fall time vs. voltage mi n. typ. m ax. 0 300 600 900 1200 1500 -50-25 0 25 50 75100125 temperature ( o c) sd to output sd time (ns ) figure 10a. sd to output shutdown time vs . te m perature mi n. typ. m ax. 0 300 600 900 1200 1500 10 12.5 15 17.5 20 supply voltage (v) sd to output sd time (ns ) figure 10b. sd to output shutdown time vs. voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 10 www.irf.com mi n. typ. m ax. 0 300 600 900 1200 1500 -50-25 0 25 50 75100125 temperature ( o c) itrip to fault time (n s _____ figure 11a. itrip to fault time vs . te m perature mi n. typ. m ax. 0 300 600 900 1200 1500 10 12.5 15 17.5 20 supply voltage (v) itrip to fault time (n s _____ figure 11b. itrip to fault time vs. voltage mi n. typ. m ax. 300 600 900 1200 1500 1800 -50 -25 0 25 50 75 100 125 temperature ( o c) itrip to output sd time (n s figure 12a. itrip to output shutdow n time vs . te m perature mi n. typ. m ax. 300 600 900 1200 1500 1800 10 12.5 15 17.5 20 supply voltage (v) itrip to output sd time (n s figure 12b. itrip to output shutdow n time vs. voltage mi n. typ. m ax. 300 600 900 1200 1500 1800 -50-25 0 25 50 75100125 temperature ( o c) flt-clr to fault clear time (n s ________ ______ figure 13a. flt-clr to fault clear time vs . te m perature mi n. typ. m ax. 300 600 900 1200 1500 1800 10 12.5 15 17.5 20 supply voltage (v) flt-clr to fault clear time (n s ________ ______ figure 13b. flt-clr to fault clear time vs. voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 11 m ax. typ. mi n. 0 150 300 450 600 750 -50 -25 0 25 50 75 100 125 temperature ( o c) deadtime (ns) figure 14a. deadtime vs. temperature mi n. typ. m ax. 0 150 300 450 600 750 10 12.5 15 17.5 20 supply voltage (v) deadtime (ns) figure 14b. deadtime vs. voltage mi n. typ. 0 4 8 12 16 20 -50 -25 0 25 50 75 100 125 temperature ( o c) amplifier slew rate (v/ s) figure 15a. amplifier slew rate (+) vs. temperature mi n. typ. 0 4 8 12 16 20 10 12.5 15 17.5 20 supply voltage (v) amplifier slew rate (v/ s) figure 15b. am plifier slew rate (+) vs. voltage mi n. typ. 0 1 2 3 4 5 -50-250 255075100125 temperature ( o c) amplifier slew rate (v/ s) figure 16a. amplifier slew rate (-) vs. temperature mi n. typ. 1 2 3 4 5 10 12.5 15 17.5 20 supply voltage (v) amplifier slew rate (v/ s) figure 16b. amplifier slew rate (-) vs. voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 12 www.irf.com mi n. 1 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "0" input voltage (v) figure 17a. logic "0" input voltage (out=lo), fault clear voltage vs. tem perature mi n. 1 2 3 4 5 6 10 12.5 15 17.5 20 supply voltage (v) logic "0" input voltage (v) figure 17b. logic "0" input voltage (out=lo), fault clear voltage vs. voltage m ax. 0 1 2 3 4 5 -50 -25 0 25 50 75 100 125 temper atr e ( o c) logic "1" input voltage (v) figure 18a. logic "1" input (out=hi), fault clear input voltage vs. temperature m ax. 0 1 2 3 4 5 10 12.5 15 17.5 20 supply voltage (v) logic "1" input voltage (v) figure 18b. logic "1" input (out=hi), fault clear input voltage vs. voltage mi n. typ. m ax. 1.0 1.5 2.0 2.5 3.0 -50 -25 0 25 50 75 100 125 temper atr e ( o c) sd input th (+) (v ) figure 21a. sd input th(+) vs. temperature mi n. typ. m ax. 1.0 1.5 2.0 2.5 3.0 10 12.5 15 17.5 20 supply voltage (v) sd input th (+) (v ) figure 21b. sd input th(+) vs. voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 13 mi n. typ. m ax. 1.0 1.5 2.0 2.5 3.0 -50 -25 0 25 50 75 100 125 temper atr e ( o c) sd input th (-) (v ) figure 22a. sd input th(-) vs. temperature mi n. typ. m ax. 1.0 1.5 2.0 2.5 3.0 10 12.5 15 17.5 20 supply voltage (v) sd input th (-) (v ) figure 22b. sd input th(-) vs. voltage mi n. typ. m ax. 200 400 600 800 1000 -50-25 0 255075100125 temperature ( o c) i itrip input th (+) (mv ) figure 23a. i itrip input th(+) vs. temperature mi n. typ. max. 200 400 600 800 1000 10 12.5 15 17.5 20 supply voltage (v) i itrip input th (+) (mv ) figure 23b. i itrip input th(+) vs. voltage mi n. typ. m ax. 100 300 500 700 900 -50 -25 0 25 50 75 100 125 temperature ( o c) i itrip input th (-) (mv ) figure 24a. i itrip input th(-) vs.temperature mi n. typ. m ax. 100 300 500 700 900 10 12.5 15 17.5 20 supply voltage (v) i itrip input th (-) (mv ) figur e 24b. i itrip input th(-) vs. voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 14 www.irf.com m ax. 0.0 0.1 0.2 0.3 0.4 0.5 -50 -25 0 25 50 75 100 125 temperature ( o c) high level output voltage (v) figure 25a. high level output vs. temperature m ax. 0.0 0.1 0.2 0.3 0.4 0.5 10 12.5 15 17.5 20 supply voltage (v) high level output voltage (v) figure 25b. high level output vs. voltage m ax. 0 0.1 0.2 0.3 0.4 0.5 -50 -25 0 25 50 75 100 125 temperature ( o c) low level output voltage (v) figure 26a. low level output vs. temperature m ax. 0 0.1 0.2 0.3 0.4 0.5 10 12.5 15 17.5 20 supply voltage (v) low level output voltage (v) figure 26b. low level output vs. voltage m ax. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) offset supply leakage current ( a) figure 27a. offset supply leakage current vs. temperature m ax. 0 100 200 300 400 500 0 100 200 300 400 500 600 supply voltage (v) offset supply leakage current ( a) figure 27b. offset supply leakage current vs. voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 15 m ax. typ. 0 50 100 150 200 250 -50-250 255075100125 temperature ( o c) v supply current ( ? ) figure 28a. v bs supply current vs. temperature m ax. typ. 0 50 100 150 200 250 10 12.5 15 17.5 20 supply voltage (v) v supply current ( ? ) figure 28b. v bs supply current vs. voltage typ. m ax. 0 4 8 12 16 20 -50-25 0 25 50 75100125 temperature ( o c) v cc supply current ( a) figure 29a. v cc supply current vs. temperature m ax. typ. 0 4 8 12 16 20 10 12.5 15 17.5 20 supply voltage (v) v cc supply current ( a) figur e 29b. v cc supply current vs. voltage typ. m ax. 0 200 400 600 800 -50-25 0 25 50 75100125 temperature ( o c) logic "1" input current ( a) figure 30a. logic "1" input bais current vs. temperature m ax. typ. 0 200 400 600 800 10 12.5 15 17.5 20 supply voltage (v) logic "1" input current ( a) figure 30b. logic "1" input bais current vs. voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 16 www.irf.com m ax. typ. 0 200 400 600 800 -50-25 0 25 50 75100125 temperature ( o c) logic "0" input current ( a) figure 31a. logic "0" input bais current vs. temperature typ. m ax. 0 200 400 600 800 10 12.5 15 17.5 20 supply voltage (v) logic "0" input current ( a) figure 31b. logic "0" input bais current vs. supply voltage typ. m ax. 0 100 200 300 400 -50-25 0 255075100125 temperature ( o c) "high" sd bais current ( a) figure 32a. "high" shutdow n bais current vs. temperature typ. m ax. 0 100 200 300 400 10 12.5 15 17.5 20 supply voltage (v) "high" sd bais current ( a) figure 32b. "high" shutdow n bais current vs. supply voltage m ax. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) "low" sd bais current (na) figure 33a. "low" shutdow n bais current vs. temperature m ax. 0 100 200 300 400 500 10 12.5 15 17.5 20 supply voltage (v) "low" sd bais current (na) figure 33b. "low " shutdown bais current vs. supply voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 17 typ. m ax. 0 100 200 300 400 -50 -25 0 25 50 75 100 125 temperature ( o c) "high" i itrip bias current ( a) figure 34a. "high" i itrip bais current vs. temperature typ. m ax. 0 100 200 300 400 10 12.5 15 17.5 20 supply voltage (v) "high" i itrip bias current ( a) figure 34b. "high" i itrip bais current vs. supply voltage m ax. 0 100 200 300 400 500 -50-250 255075100125 temperature ( o c) "low" i itrip bais current (na) figure 35a. "low" i itrip bais current vs. temperature m ax. 0 100 200 300 400 500 10 12.5 15 17.5 20 supply voltage (v) "low" i itrip bais current (na) figure 35b. "low " i itrip bais current vs. supply voltage typ. m ax. 0 200 400 600 800 -50-25 0 25 50 75100125 temperature ( o c) "high" fault clear input current ( a) figure 36a. "high" fault clear input bais current vs. temperature typ. m ax. 0 200 400 600 800 10 12.5 15 17.5 20 supply voltage (v) "high" fault clear input current ( a) figure 36b. "high" fault clear input bais current vs. supply voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 18 www.irf.com typ. m ax. 0 200 400 600 800 -50-25 0 25 50 75100125 temperature ( o c) "low" fault clear input current ( a) figure 37a. "low" fault clear input bais current vs. temperature typ. m ax. 0 200 400 600 800 10 12.5 15 17.5 20 supply voltage (v) "low" fault clear input current ( a) figure 37b. "low" fault clear input bais current vs. supply voltage mi n. typ. m ax. 6 8 10 12 14 -50 -25 0 25 50 75 100 125 temperature ( o c) v bs uv th (+) (v) figure 38a. ir2135/ir2235 v bs undervoltage threshold (+) vs. temperature mi n. typ. m ax. 6 8 9 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v bs uv th (+) (v) figure 38b. ir2133/ir2233 v bs undervoltage threshold (+) vs. temperature mi n. typ. m ax. 6 8 10 12 14 -50 -25 0 25 50 75 100 125 temperature ( o c) v uv th (+) (v) figure 39a. ir2135/ir2235 v bs undervoltage threshold (-) vs. temperature typ. mi n. m ax. 6 8 9 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v uv th (+) (v) figure 39b. ir2133/ir2233 v bs undervoltage threshold (-) vs. temperature
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 19 mi n. typ. m ax. 8 10 11 13 14 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc uv th (+) (v) figure 40a. ir2135/ir2235 v cc undervoltage threshold (+) vs. temperature typ. m ax. mi n. 6 8 9 11 12 -50-25 0 25 50 75100125 temperature ( o c) v cc uv th (+) (v) figure 40b. ir2133/ir2233 v cc undervoltage threshold (+) vs. temperature typ. mi n. m ax. 6 8 9 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc uv th (+) (v) figure 41a. ir2135/ir2235 v cc undervoltage threshold (-) vs. temperature typ. mi n. m ax. 6 8 9 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc uv th (+) (v) figure 41b. ir2133/ir2233 v cc undervoltage threshold (-) vs. temperature typ. m ax. 0 50 100 150 200 -50 -25 0 25 50 75 100 125 fault-low on resistance ( ?) figure 42a. fault- low on resistance vs. temperature temperature ( o c) typ. m ax. 0 30 60 90 120 150 10 12.5 15 17.5 20 supply voltage (v) fault-low on resistance ( ? ) figure 42b. fault- low on resistance vs. supply voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 20 www.irf.com mi n. typ. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 output source current (m ) figure 43a. output source current vs. temperature temperature ( o c) mi n. typ. 0 100 200 300 400 500 10 12.5 15 17.5 20 output source current (m ) figure 43b. output source current vs. supply voltage supply voltage (v) mi n. typ. 0 200 400 600 800 1000 -50 -25 0 25 50 75 100 125 temperature ( o c) output sink current (m ) figure 44a. ourput sink current vs. temperature mi n. typ. 0 200 400 600 800 1000 10 12.5 15 17.5 20 supply voltage (v) output sink current (m ) figure 44b. ourput sink current vs. supply voltage m ax. typ. -10 10 30 50 70 90 -50 -25 0 25 50 75 100 125 temperature ( o c) amplifier input offset voltage (mv) figure 45a. amplifier input offest voltage vs. temperature typ. m ax. -10 10 30 50 70 90 10 12.5 15 17.5 20 supply voltage (v) amplifier input offset voltage (mv) figure 45b. amplifier input offest voltage vs. supply voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 21 mi n. typ. 0 30 60 90 120 150 -50 -25 0 25 50 75 100 125 temperature ( o c) amplifier cmrr (db) figure 46a. amplifier common mode rejection ratio vs. temperature mi n. typ. 0 30 60 90 120 150 10 12.5 15 17.5 20 supply voltage (v) amplifier cmrr (db ) figure 46b. amplifier common mode rejection ratio vs. supply voltage mi n. typ. 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 temperature ( o c) amplifier psrr (db) figure 47a. amplifier pow er supply rejection ratio vs. temperature mi n. typ. 0 25 50 75 100 125 10 12.5 15 17.5 20 supply voltage (v) amplifier psrr (db) figure 47b. amplifier power supply rejection ratio vs. supply voltage typ. m ax. mi n. 4.5 4.8 5.1 5.4 5.7 6.0 10 12.5 15 17.5 20 supply voltage (v) amplifier v oh (v) figure 48. amplifier high level output voltage vs. supply voltage m ax. 0 10 20 30 40 50 10 12.5 15 17.5 20 supply voltage (v) amplifier v ol (v) figure 49. amplifier low level output voltage vs. supply voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 22 www.irf.com mi n. typ. 0 3 6 9 12 15 10 12.5 15 17.5 20 supply voltage (v) amplifier i src (v) figure 50. amplifier output source current vs. supply voltage mi n. typ. 0.0 0.5 1.0 1.5 2.0 2.5 10 12.5 15 17.5 20 supply voltage (v) amplifier i snk (v) figure 51. amplifier output sink current vs. supply voltage typ. 0 4 8 12 16 20 10 12.5 15 17.5 20 supply voltage (v) amplifier i o + (v) figure 52. amplifier output high short circuit current vs. supply voltage typ. 0 4 8 12 16 20 10 12.5 15 17.5 20 supply voltage (v) amplifier i o - (v) figure 53. amplifier output low short circuit current vs. supply voltage
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 23 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 juntion tem perature (c ) 480 320v 160 0v figure 8. ir2133j junction temperature vs frequency driving (irgpc30kd2) rgate = 5.1 ? @ vcc = 15v frequency (hz) 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 junti on tem perature (c ) 480v 320v 160v 0v figure 7. ir2133j junction temperature vs frequency driving (irgpc20kd2) rgate = 5.1 ? @ vcc = 15v frequency (hz) figure 9. ir2133j junction temperature vs frequency driving (irgpc40kd2) rgate = 5.1 ? @ vcc = 15v frequency (hz) 20 30 40 50 60 70 80 90 100 110 120 130 140 150 1e+2 1e+3 1e+4 1e+5 jun cti on tem perature (c ) 480v 320v 160v 0v figure 10. ir2133j junction temperature vs frequency driving (irgpc50kd2) rgate = 5.1 ? @ vcc = 15v frequency (hz) 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 junction tem perature (c ) 480v 320v 160v 0v
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 24 www.irf.com 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 ju n cti on tem perature (c ) 500v 300v 0v 900v figure 14. ir2233j junction temperature vs frequency driving (irg4zh71kd) rgate = 5 ? @ vcc = 15v frequency (hz) figure 13. ir2233j junction temperature vs frequency driving (irg4ph50kd) rgate = 10 ? @ vcc = 15v frequency (hz) ju n cti on tem perature (c ) 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 500v 300v 0v 900v 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 junction tem perature (c ) 900v 500 300v 0v figure 11. ir2233j junction temperature vs frequency driving (irg4ph30kd) rgate = 20 ? @ vcc = 15v frequency (hz) 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 900v 300 500v 0v frequency (hz) figure 12. ir2233j junction temperature vs frequency driving (irg4ph40kd) rgate = 15 ? @ vcc = 15v 1 1 1 juncti on tem perature (c )
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 25 package dimensions 28-lead pdip (wide body) 01-6011 01-3024 02 (ms-011ab) 28-lead soic (wide body) 01-6013 01-3040 02 (ms-013ae) notes
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) 26 www.irf.com 01-6009 00 01-3004 02(mod. ) (ms-018ac) 44-lead plcc w/o 12 leads
ir2133/ir2135/ir2233 / ir2235(j & s ) & (pbf) www.irf.com 27 leadfree part marking information order information basic part (non-lead free) 28-lead pdip ir2133 order ir2133 2 8-lead soic ir2133s order ir2133s 28-lead pdip ir2135 order ir2135 28-lead soic ir2135s order ir2135s 28-lead pdip ir2233 not available 28-lead soic ir2233s order ir2233s 28-lead pdip ir2235 not available 28-lead soic ir2235s order ir2235s 44-lead plcc ir2133j order ir2133j 44-lead plcc ir2135j order ir2135j 44-lead plcc ir2233j order ir2233j 44-lead plcc ir2235j order ir2235j leadfree part 28-lead pdip ir2133 order ir2133pbf 28-lead soic ir2133s order ir2133spbf 28-lead pdip ir2135 order ir2135pbf 28-lead soic ir2135s order ir2135spbf 28-lead pdip ir2233 order ir2233pbf 28-lead soic ir2233s order ir2233spbf 28-lead pdip ir2235 order ir2235pbf 28-lead soic ir2235s order ir2235spbf 44-lead plcc ir2133j order ir2133jpbf 44-lead plcc ir2135j order ir2135jpbf 44-lead plcc ir2233j order ir2233jpbf 44-lead plcc ir2235j order IR2235JPBF lead free released non-lead free released part number date code irxxxxxx yww? ?xxxx pin 1 identifier ir logo lot code (prod mode - 4 digit spn code) assembly site code per scop 200-002 p ? marking code ir world headquarters: 233 kansas st., el segundo, california 90245 tel: (310) 252-7105 this product has been qualified per industrial level data and specifications subject to change without notice. 9/22/2005


▲Up To Search▲   

 
Price & Availability of IR2235JPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X